Skip to main content
Log in

Adaptive opposition slime mould algorithm

  • Optimization
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Recently, the slime mould algorithm (SMA) has become popular in function optimization, because it effectively uses exploration and exploitation to reach an optimal solution or near-optimal solution. However, the SMA uses two random search agents from the whole population to decide the future displacement and direction from the best search agents, which limits its exploitation and exploration. To solve this problem, we investigate an adaptive approach to decide whether opposition-based learning (OBL) will be used or not. Sometimes, the OBL is used to further increase the exploration. In addition, it maximizes the exploitation by replacing one random search agent with the best one in the position updating. The suggested technique is called an adaptive opposition slime mould algorithm (AOSMA). The qualitative and quantitative analysis of AOSMA is reported using 29 test functions that consisting of 23 classical test functions and 6 recently used composition functions from the IEEE CEC 2014 test suite. The results are compared with state-of-the-art optimization methods. Results presented in this paper show that AOSMA’s performance is better than other optimization algorithms. The AOSMA is evaluated using Wilcoxon’s rank-sum test. It also ranked one in Friedman’s mean rank test. The proposed AOSMA algorithm would be useful for function optimization to solve real-world engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutuparna Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, M.K., Panda, R. & Abraham, A. Adaptive opposition slime mould algorithm. Soft Comput 25, 14297–14313 (2021). https://doi.org/10.1007/s00500-021-06140-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-06140-2

Keywords

Navigation